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Using a cell-dynamic system simulation scheme, we investigate the phase-ordering dynamics of noncon-
servedO(n) models without topological defects, i.e., foi>d+1 whered is the spatial dimensionality. In
particular, we consider zero-temperature quenchesdfe?, n=4,5 and ford=1, n=3,4,5. We find, in
agreement with previous simulations using fixed-length spins, that dynamical scaling is obtained, with char-
acteristic lengthL(t)=t"2 We show that the asymptotic behavior of the structure-factor scaling function
g(q) is well fitted by the stretched exponential fomiqg) ~exp(—bg’), with an exponent that appears to
depend on botm andd. An analytical treatment of an approximate lamyequation for the pair correlation
function yieldsg(q)~q~ @~ Y"2exp(—ba), with b~ (Inn)*? for largen, in agreement with recent simulations
of the same equatiofS1063-651X96)07205-4

PACS numbdis): 64.60.Cn, 64.60.My

I. INTRODUCTION violation due to the existence ofvo relevant length scales:
the phase coherence length and phase winding length. On the
The phase-ordering dynamics of systems quenched frome@ther hand, the two-dimensional Heisenberg modet 8)

high-temperature disordered state into an ordered state isv@ith nonconserved dynamics also violates dynamic scaling
problem of great relevance in the description of out-of-due, it appears, to the existence of as many as three separate
equilibrium pattern formatiofil]. One well established prop- |ength scales, related to individual texture size, the typical
erty is the onset of dynamic scaling, where the late-timeseparation between textures, and the typical distance be-
behavior of the order-parameter correlation functions is deqyeen textures of opposite char. These texture systems

scribed by scaling forms with a single time-dependent Iengtrhre, perhaps, the most complex of the phase ordering sys-
scaleL(t). Thus the real-space correlation function is found;g s

to have the scaling form By contrast, systems without topological defects
(n>d+1) seem relatively straightforward. There is good

CrH=Ffr/Lv), (4.1 evidence for the simple scaling behavior described b§)
while its Fourier transform, the structure factor, has the cor@nd (1.2, with characteristic scalé(t)~t"* for noncon-
responding scaling form served dynamics. The energy scaling approach of Bray and

Rutenberg [17] shows that, provided scaling holds,
S(k,t)=[L(t)]%(KL(t)). (1.20  L(t)~tY2is indeed correct fon>d+1 systems with non-

conserved dynamics, and give$t) ~t¥* for conserved dy-

Conventional experimental systems such as binary alloysamics, again nicely consistent with simulation res{iS]
and binary liquids are described by a scalar order parameteand the renormalization group result of Brih8].
Recently, however, there has been much interest in systems Much less is known, however, about the form of the
with  more complicated order parameters such asstructure-factor tail fom>d+ 1. The recent simulations of
n-component vectorthe O(n) model [1-15 and traceless Rao and Chakrabart§RC) [10], with conserved dynamics,
symmetric tensorgnematic liquid crystals[16]. In this pa- for the casesi=1, n=3 andd=2, n=4 show “squeezed
per we restrict our discussion to tkn) model. exponential” behaviofi.e.,g(q) ~exp(—bqg’) with 5>1]. In

Much numerical and theoretical effort has been devoted tohis paper we concentrate on systems withd+ 1 and non-
understanding the basic properties of systems that can supenserved dynamics. We consider the cade?, n=4,5
port singular topological defects, i.e., systems witkd. andd=1, n=3,4,5. In each case we confirm the expected
The presence of such defects leads to a generalization of th&? growth, and find “stretched exponential” behaviére.,
usual Porod law for the largg-tail of the structure-factor g(q)~exp(—bq’) with §<1] for the tail of the structure fac-
scaling functiong(q), namely,g(q)~q ("™ for g>1 [6].  tor, with an exponend that appears to depend anandd.
This result is geometrical in origin, and is independent of In an attempt to understand the origin of this tail behavior,
whether or not the order parameter is conserved by the dywe present an analytical approach based on an approximate
namics[7]. equation due to Bray and Humay(BH) [12], which is itself

Very recently, the cases=d+ 1, for which nonsingular based on the “Gaussian auxiliary fieldGAF) method[14]
topological textures occur, have been studied numericallyhat describes rather well the form of the structure factor for
(for d=2) and analytically(for d=1). Rutenberg and Bray nonconserved systems with singular defeats<@). For
[8] found that thed=1 XY model (h=2) exhibits a scaling those systems, this method reproduces, in particular, the gen-
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eralized Porod tail. Fon>d+ 1, the physical basis of the with I' a kinetic coefficient that we will set equal to unity,

method is less clear. However, the simple truncation of thendF the free energy functional that generates the thermo-

equation at leading order inri/ proposed by BH in another dynamic force,

context[12], leads to an exponential decaygff), modified

by a power-law prefactor fod> 1. It is noteworthy that the -

as . L o : e F[qﬁ(x,t)]:f d9
ymptotic behavior is nonanalytic innl/for n strictly infi

nite, the Gaussian forrg(q) ~exp(—2q?) is obtained. The

exponential asymptotics of the BH equation were noted inyith the potential defined as

recent numerical studies by Castellano and Zanh&Hi.

Using_ a “hard—s.pin” model Newman, Bray, and Mqore V(d(x,1)=1[1- $2(x,H) T3 2.3
[5] studied numerically the dynamics of one-dimensional
systems without defects far=3,4, and 5. Measuring only - n L2 . .
the real-space correlations, they found that dynamic scalin&}’hered’zzEizl‘i’i (x,t). The ground states, or f'X(id points
is obeyed with characteristic length(t)=tY2 Moreover, ~©f the dynamics, are determined by the conditigf=1,
they found the real-space correlation function was very welvhich defines a degenerate manifold of states connected by
fitted by a Gaussian form, which is the exact result in therotations. In the internal space of the order parameter, this
limit n—o. The Fourier space analysis presented here, ré:nanifold is the surface of an-dimensional Sphere. At late
vealing stretched exponential tails, shows that the goodmes the order parameter is saturated in lergt, lies on
Gaussian fits achieved in real space are misleading. the ground state manifold everywhgrghen the dynamics is

Our main results can be summarized as follo@sFor all driven by the decrease of the free energy associated with the
our models the characteristic length scale required to colterm (V)2 in (2.2), through a reduction in the magnitude of
lapse the data for the real-space correlation function anthe spatial gradients.
structure factor id_(t)=t*2 in agreement with theoretical We can construct an explicit numerical scheme for the
predictiong 17]. (ii) The asymptotic behavior of the structure simulation based on a computationally efficient algorithm,
factor is well described by a stretched exponential of thenamely, the CDJ19], which updates the order parameter
form g(q) ~exp(—bq’), where the exponerit apparently de- according to the rule
pends on botm andd and seems to be different from the
value obtained for the corresponding system with conserved - - 1 - -
dynamics[10]. (iii) An analytical treatment of the approxi- ~ #(Xt+1)=H(d(x,t))+7D EZ (X', D= d(X, V)|,
mate BH equation, expected to be valid at latbet finite) X 2.4
n, gives a simple exponential modified by a power, '
g(a)~q~ @ Dexp(~bg), with the sameasymptotic form ...
for conserved dynamics.

The rest of this paper is organized as follows. In the next - - - -
section, we introduce the cell-dynamic systé@bS) model H($(61)= (D + (X D[1-($(x17)], (25
based on the time-dependent Ginzburg-LandalDGL) ) i
equation for a zero-temperature quench, and we describe t{416réZ is the number of nearest neighbors andndD are
corresponding numerical procedure employed in the simulgP@rameters that we choose to be 0.2 andD=0.5 in our

tion. Section Il presents simulation results for a vector ordeSimulations. _ L
parameter witm=4 andn=5 components in one and two The above numerical procedure is identical to that used

dimensions and the one-dimensior@{3) model. For the by Toyoki[15], differing only in the values of the parameters

d=2 systems, we also present data for the real-space corré:and D_' The CDSI is_ a Efulﬁr-like a}lgorithm and for_ co;w_e-
lation function to demonstrate the dynamic scaling behaviorMence In our analysis of the results we use a unit of time
ual to the update time step It should be notedsee Figs.

We then discuss the procedure used to obtain the asymptot‘ﬁ?I . : : . ;
functional form of the structure factor tail. Next we compare+ @nd 3 that the scaling regime is reached very quickly in

the data to the results of the approximate analytic theoryt'€S€ systems without defects, and very long runs are not

Finally we make some concluding comments on our resuthe%issary' g onal <t of lattice of
and a give a brief summary, e two-dimensional systems consist of a square lattice o

size 256X 256 with periodic boundary conditions. The
physical quantities are calculated as averages over 20 inde-
Il. MODEL AND SIMULATIONS pendent distributions of initial conditions. The one-
dimensional systems have=16 384 sites(with periodic
The dynamic evolution of a nonconserved vectorhoundary conditionsand we average 100 independent runs.
order parameter (model A) with n components The initial conditions for the order parameter components

1 . -
§[V¢(X,t)]2+V(¢(X,t)) » (22

¢=(b1,02, .. ..bn), for a zero-temperature quench, is de- &, were randomly chosen from a uniform distribution with
scribed by a purely dissipative process defined in term of thgupport on the interval€0.1,0.1).
following TDGL equation: A quantity of interest that is computed during the course

of the numerical simulation in the two-dimensional models is
the two-point real-space correlation function

Ip(x,t) SF(d(x,1))
=-T — , 2.1
it Sp(x,1) @D

C(r,t)=(p(x,t)- (x+1,1)), (2.6)
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FIG. 1. (a) Real-space correlation functioB(r) for a two- FIG. 2. (a) Scaling structure factag(q)=[L(t)] *S(k,t) as a

dimensional system with=4 components as a function of distance function of scaled momentumg=KL(t) for a two-dimensional sys-

r for several time¢. The data were obtained from lattices of size tem withn=4 components for lattices of size 28@56 (averaged

256 X 256, averaged over 20 different initial conditiols) Dem- ~ over 20 different initial conditions (b) Demonstration of the

onstration of dynamic scaling(r,t)=f(r/L(t)), with L(t)=t'2 stretched exponential behavior, plottingg) againstq® with
6=0.435. The line is included as a guide to the eye.

where( ) stands for the average over the set of independent lll. RESULTS
initial conditions(or “runs”). A spherical average over all
possible distances=|r| is performed to find the isotropic
real-space correlatio@(r,t). The other function of interest,
calculated for all the models, is the structure factor

Dynamic scaling is observed for all the models studied.
The scaling regime is reached at quite early times, in agree-
ment with previous studies. We show that dynamic scaling
holds in the two-dimensional systema=4,5), using the
characteristic length (t) =t'2 deduced from theoretical con-

. R siderationg§17]. This agrees with earlier simulations of Bray
S(k,t)=((k,t)- p(—K,1)). (2.7 and Humayun using “hard-spin” dynami¢8].
Figure Xa) presents a plot fod=2, n=4 of the correla-
tion function (1.1) as a function of distance for several
We also make a spherical average over all possible values @ines, while in Fig. 1b) we show the collapsed dynamic
k with givenk=|K|. scaling function when the analysis is made using the scaling

In the calculation of these quantities at each time, the datgariablex=r/L(t). As can be seen from the figure, the scal-
are “hardened” by replacing the order parameter at eacling function f(x) is a monotonically decreasing function
point by a unit vector in the same directi¢iine fixed point  with the generic featureless shape that is characteristic of
of the CDS iteration being a vector of unit lengthThis  nonconserve®(n) models.
procedure accelerates the entry into the dynamic scaling re- It is of some interest to investigate the smalbehavior of
gime, and helps us to elucidate the proper nature of théhe real-space scaling functidifx). In systems withn=<d,
asymptotic tail in the structure factor. the existence of singular topological defects leads to a
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TABLE |. Parameters determined from fitting of the simulation 1
results for the two-dimensional systems: the smalolution g ?§§g
(x<0.5) in the scaling function with the form 0.9 - 20& O t=60
f(x)=1—ax?+ Bx* and the asymptotic analysis of scaling struc- os £ i, ﬁ Ei % 28
ture factor in term of the stretched exponentjét) ~exp(—bg?). E DAo;jg ¢ t=180
07 F .00 * (=220
Smallx Tail 06 £ °Leetty ¥ 12289
n @ B ) b 05 b 5 A"” o {—320
4 1.5326 1.3916 0.435 8.19 04 £ A (a)
5 1.3040 0.8417 0.613 4.39 . RS
02 F Tt ledy
nonanalytic term of the fornix|" (with an additional Ix o1 b i AA°°<:°;'§§3%*
factor for evenn), which leads to th&™4*™ Porod tail in I TN Pofaititaiiisttey,
Fourier spacd6,7]. In the present case, where>d, we 0 5 10 15 20 25 30 35 40
expect no such short-distance singularities. Therefore, we "
consider an expansion of the forfix) =1— ax?+ Bx*- - -. —_ 1
In Table | we present the parametersand 8 determined S 09 3
from the simulations in the rangex<0.5. The ratio B 0k
r=B/a? should be a universal number for givarandd. It © 08 = (b)
will be seen from Table | that this ratio has the value 07 L *
r=0.59 forn=4, different from the value 1/2 obtained for a - ‘i
Gaussian function, which is the exact result for the limit 0.6 3 &k
n—oo. Forn=5, Table | givesr=0.49, already consistent 0.5 - Y
with the largen result. However, in the absence of any short- 04 E Y
distance singularity, the smatlbehavior provides no useful 2 ‘i‘
information on the nature of the tail in the structure factor. 0.3 2
Consequently, it is more convenient to investigate directly 02 F
the simulation results of the structure factor and extract from 01 4
them the asymptotic behavior. We shall see that the behavior L T, K

in Fourier space is clearly non-Gaussian, evennferb.

0
0 025 05 075 1

125 1.5 1.75 2 225 25

As expected, given the absence of topological defects, the
results indicatéFig. 2) that the decay of the structure factor
is clearly faster than a power law, in contrast to the interpre-
tation of his own similar results by ToyokL5]. In order to

demonstrate that the tail is well described by the stretched _ , . . :
exponential form the correlation function as a function of distance for different

times. In this model the collapse is also achieved using the
g(q)~Aexp —bq?), characteristic lengtt. (t)=t'?, as can be observed in Fig.

3(b). Therefore, both models are consistent with dynamical
whereq=KL(t) is the scaling variable in momentum space, exponeniz= 2. The corresponding scaling plot for the struc-
we attempt to find the corresponding powgin the expo-  ture factor is shown in Fig.(4). A more important effect is
nential by plotting liy versusg® and adjusting the value of observed in the structure factor tail, because in this case it
¢ until the best linear behavior is obtained in the regimealso has a stretched exponential but with an apparently larger
g>1. During the fitting procedure the other two parametersexponent. Following an analysis similar to that used for
of the fit, A andb, are readily determined. The criteria used n=4, we find that the value of the best fit value of the ex-
for the optimum fitting is based on the Pearson correlatiorponent isé=0.613, and the corresponding PCC in the re-
coefficient(PCQ, which measures the strength of the lineargression is —0.999998. The other two parameters are
relation among two variables and varies betweeh (per-  InA=7.57 andb=4.39. In Fig. 4b) we plot Irg againstq®
fect negative linear relatiorand + 1 (perfect positive linear and the linear behavior is seen clearly.
relationship. We proceed as follows: first, we choose an Comparison between the real-space correlation functions
exponents and then perform linear regression; next weof the n=4 andn=5 models shows that the scaling func-
change$ until the PCC reaches its maximum value. Thetions are very similar; the main difference is that the scaling
regression coefficients are calculated using the values of thiginction decreases slightly more slowly far=5 than for
scaling structure function at the last two times in the simun=4. This is reflected in the parameters of the fitting func-
lation. The optimum values for system with=4 compo- tion for the smallx range: the amplitudea and g8 tend to
nents are §=0.435 with a Pearson coefficient of decrease as increasegTable ).
—0.999998. The other two parameters ar&=#13.21 and We turn to a discussion of the simulation results for one-
b=8.19. This result is presented in the FigbR dimensional systems. We shall describe the relevant behav-

We turn now to the description of the case:5, follow-  ior in Fourier space. Real-space data have been presented in

ing a similar analysis to the=4 model. Figure &) shows [5]. Our results show that in one-dimensional systems the

r/L(t)

FIG. 3. Same as Fig. 1 but for the=5 model.

(3.9
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FIG. 4. (@) Same as Fig. 2 but for the=5 model. (b) The FIG. 5. (a) Scaling structure factag(q)=[L(t)] 'S(k,t) as a
power 6=0.613 was found to give the best linear relation betweenfynction of scaled momentung=KkL(t) for a one-dimensional
Ing(q) andg”®. Heisenberg moddlO(3) model] for lattices of size 16 384aver-

aged over 100 different initial conditiongContinuous curve: result
asymptotic behavior of the structure factor also has af the approximate analytical treatment described in the txt.
stretched exponential form, but the fitted exponefitare Demonstration of the stretched exponential behavior, plotting
larger than those of the corresponding two-dimensional modng(d) againstq® with §=0.79. The line is a guide to the eye.
els, and close to unity fon=4 and 5.

In Fig. 5(a), we present the simulation results for the scal-models are bigger than for the corresponding models in two
ing function g(q) of the structure factor for the one- dimensions. Therefore, we have evidence that the exponent
dimensional Heisenberg Modeln€3). The continuous & increases witm, while it seems to decrease with Note
curve is the result of the analytical approach described irthat the Gaussian result obtained foec corresponds to
Sec. IV. The analysis of the asymptotic behavior gives ans=2, so the results presented here for the structure-factor tail
exponents=0.79 for the stretched exponential. Figlhp are actually quite far from that limit. The analytical treatment
shows the curve of [ig(q)] versusq?, where the linear be- presented in the next section gives some indication of why
havior is clearly observed. Similarly, we present the correthis might be expected. In particular, it suggests that the
sponding plots for the@=4 model in Fig. 6, where the mea- structure factor is dominated by a simple exponential for
sured exponent is now=0.98, while forn=5 we obtain g— at fixed largen, while the familiar Gaussian form is
6=1.02 as is shown in Fig. 7. The values &ffor the last recovered asi— at fixedq.
two models are so close that in practice it is difficult to We conclude this section by discussing briefly some al-
distinguish between them. They are also close to the valuternative fitting forms for the structure factor tail. First, how-
unity obtained from the approximate largeequation dis- ever, we note that the stretched exponential f¢811) de-
cussed in the following section. scribes the tail well over at least 10 decadesS@{) in all

It is clear from the results for the one-dimensional modelscases. Of course, this represents a much smaller dynamic
that the scaling function in real space is not a Gaussian funaange (1 to 13 decadegin the scaling variableg=KkL(t).
tion, despite the good real-space fits to this form obtained itMotivated by the analytical resulEq. (4.7) below] of the
[5]. Moreover, the(effective exponentsé for the n=4,5  approximate large-theory, other fitting forms were tried for
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FIG. 6. (8 Same as Fig. 5, but for the=4 model. (b) The FIG. 7. (a) Same as Fig. 5 but for the=5 model.(b) Same as

power 6=0.98 is found for this model to give the best linear rela- Fig. 5b), but with 5§=1.02.
tion between Ig(q) andq’.
nonlinearity asn—. The resulting equation is then finally

d=2 (the agreement with the largetheory already being Used to extract the asymptotics gfq). _ .
good forn=4 and 5 ind=1). A direct fit of (4.7) does not The GAF method for vector fields has been discussed in
work well for d=2. A||OW|ng for a genera| power-|aw pref- some detail elsewhere. We refer the reader to the Original
actor,g(q) =Aq *exp(-ba), gives a reasonable fit, but with paperd 14] and a recent reviel | for a full exposition. The
very large values fox — 5.6 forn=4 and 6.7 fom=5.  €ssence of the method is a mapping from the original field
Fixing x=1/2, but allowing for a general stretched exponentvarlableqS to an “auxiliary field” m. The function(m)

& again gives a reasonable fivith §=0.68 forn=4 and  satisfies the equation (1/2)“_1(92(5/,92 =oVlag, where

0.70 forn=5), but over a significantly reduced rangef

For these reasons we prefer the unmodified stretched expg(d’) is the potential in the Glnzburg Landau functieh).
nential (3.1) as giving the simplest and most convincing de- With the boundary condltlond>(0) 0, and ¢(m)—m/|m|
scription of the largeg data, at least for these small values of for |m|—c, this equation for(m) represents the equilib-

n in d=2. Of course, it is quite possible that the fofth7) rium profile function for a spherically symmetric topological

will fit the data well at larger values of. defect, with|m| representing distance from the defect.
The (uncontrolled approximation tham is a Gaussian
IV. ANALYTICAL TREATMENT field, and the imposition of the scaling for¢t), leads even-

) S ) tually to the self-consistent equatigh,14]
In an attempt to gain some analytical insight into the

structure factor asymptotics, we start from an approximate
equation of motion for the pair correlation function derived

using the Gaussian auxiliary field approach pioneered by
Mazenko[20]. We then make, for reasons that will becomefor the scaling functiorf (x), where primes indicate deriva-
clear, the further simplification of retaining only the leading tives. In(4.1) y is the normalized correlator of the auxiliary

N Ll PR 4.1
= 37 37g, 4.




4692

field, y=(m(1)-m(2))/[(m?(1))(m?(2))]*? where 1 and
2 represent the space-time poirist andx,,t, and the func-
tion C(y) is given by

2F 11n+2 o),
215 5 Y | 4.2

whereB(x,y) is the 8 function, andF(a,b;c;z) the hyper-

geometric function. The constait in (4.1) has to be ad-

justed so thaf(x) vanishes sufficiently fast at infinity14].
As should be clear from the above discussi@ghl) only

ny
C()’):z B

n+1 1
2 "2

F. ROJAS AND A. J. BRAY

If we assume an asymptotic forg(q) ~q”exp(—ba?), with
6<2, then(4.4) gives

2

2
B()— S-g(a), g 4.6

In the Appendix, we show that consistency with6) re-
quiresé=1 andv=(1-d)/2, i.e.,

9(q)—Ag* %exp —ba), (4.7)

In real space this implies that the functié(z) has simple

q->oo_

really makes sense for<d, based as it is on the presence of poles in the complex plane atz= *ib. The value ofb is
singular topological objects whose positions are defined byot determined by this argument; instead one can désiee

the zeros of the fields or, equivalently, by the zeros of.
Indeed, the functiorC(y) has a built-in structure that gen-

erates the Porod tail associated with such defects. Specifi-

cally, in the short-distance limit, wherg— 1, the hypergeo-
metric function in(4.2) has a singular contribution of order
(1— 9?2 (with a logarithmic correction for even). Since
1— y%~x? for small scaling variable, this singular term is
of orderx" (again, with a logarithm for even), leading to
the power-law tailg(q)~q~ "™ in Fourier space. Within
the GAF approach, this tail is obtained falt n andd. For

n>d+ 1, however, neither singular topological objects nor
nonsingular topological textures exist, so the GAF result i
qualitatively incorrect. Indeed, this is to be expected sinc
the GAF approach is specifically designed to build in the

defect structure.

So what should one do when there are no defects? We
have seen that the usual GAF approach always gives a Porod

tail, for anyn andd: this is unphysical fom>d+ 1, since

the tail is a consequence of the presence of topological de-

S
e

Appendix the relationship
A%=(16m%n/\)(27h)9 1 (4.9

betweerb and the prefactoA in the asymptotic forn{4.7).

The existence of these simple poles in real space also follows

directly from the real-space equati¢h.d). If one assumes a
singularity of the form £—zy) ~ 7, with y>0, then balancing
the dominant term$” and\ f3/2n gives immediatelyy=1,
i.e., a simple pole. The positiary is not determined, but the
residueC of the pole is given b= Fi(4n/\)Y? where the
two values correspond to the poles= *+ib. Using this re-
sult for C, one can readily recové#.8) by contour methods,
e.g., ford=1 one has

o= [ dxtxexstian

—2m(4n/\)Y%exp(—bg), gq—,

4.9

fects. One way around this impasse is to artificially approxiyhere the second line, equivalent(®8) for d=1, was ob-

mate the full GAF equation(4.1) by the form valid for
n—oo. In this limit ydC/dy=f+f3/n+0(1/n?), and(4.1)
becomes, correct t®©(1/n),

£+

d—1 x N
f’+§ 4.3

—_t =
4 4

1
f+—f3)=0.
n

This step, admittedlad hog has the desired effect of elimi-
nating the unwante¢for n>d+ 1) short-distance singularity

in f(x). Equation(4.3 is the nonconserved version of the
equation introduced by BH to study the crossover from mul-
tiscaling to simple scaling in the asymptotic dynamics of a

conservedvector field at large but fixedh [12]. Both con-

tained by closing the contour in the upper half plane.

The approach outlined above gives the relati4r8) be-
tweenA andb, but does not determinte explicitly. We now
give a heuristic argument that~ (Inn)' for largen. First
we make an observation concerning the valug .0Equation
(4.4) with g=0 gives

_d g(0
~29(0)+B(0)

l+%f d9% f3(x) /fddxf(x)

-1

. d
=5 (4.10

served and nonconserved versions have recently been studiByy particular, A=d/2. for n=. For n=c, therefore,

numerically[13].

To extract analytically the largg-behavior, we perform a
(d-dimensional Fourier transform of(4.3). The resulting
equation forg(q)=Jdf(x)exp(q-x) is

A
00+ 10" (@)= 5[0(@+B@)], (44

d
)
474

where

B(q)= %J dIxf3(x)exp(iq- x). (4.5

(4.4 becomes g°g(q)+(g/4)g’(q)=0, with solution
9(q)=(87)¥exp(-2q) [the prefactor being fixed by the
conditionf(0)=1]. Forn large but finite, on the other hand,
we have seen that the asymptotic formgig)) ~exp(—bq).

The crossover between these two forms presumably occurs at

someq=q*(n), with g(q)~exp(-2q?) for 1<q<q*, and
g(q) ~exp(=bg) for g>qg*. Matching these two forms at
g=q* gives g*~b. Next we evaluate B(g) in
the region q<g*. Here q(q)=(87)%exp(-2¢’), so
f(x)=exp(—x?/8), giving B(q)~ (1/n)exp(—2g%3). How-
ever, this decays more slowly withthan the other terms in
(4.4), which fall off as expt-29°). So the term involving
B(q) (evaluated forg<qg*) becomes comparable with the
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other terms when (h)exp(—29%/3)~exp(-2¢?), i.e., when  _ 5 .
g~ (Inm)*2  This suggestsq*~(Inn)*2, and therefore 3 0
b~ (Inn)2 The numerical data of Castellano and Zannetti % :
[13] certainly show thab increases extremely slowly with —.: S F
n. E 10 |
To compare this approximate theory with our simulation 5 3
data, we have solvet#.1) numerically ford=1, n=3,4,5, o
using the procedure described[t¥]. The Fourier transform 20 F
was then taken numerically, and the “best fit by eye” to the 25 B
structure-factor data was obtained by adjusting the time scale £
in the theoretical curves, giving the results shown by the -30 a2
continuous curves in Figs.(&, 6(a), and {a). The corre- 35 F
sponding log-linear plots, which reveal the largdsehavior 40 b
more clearly, are shown in Figs(88—(c). As might be ex- TR
pected, Eq.(4.1) [or its Fourier transforn(4.4)] does not A s TS s 10 125 s 175 20 225

describe the data quantitatively over the whole range of k L(t)
q=KkL(t), but it does give a qualitatively correct description. _
There is an early parabolic region, corresponding to a Gauss-3
ian form forg(q), which then gives way to a slower decay %
that, at least fom=4 and 5, is consistent with the simple
exponential form predicted bi4.4) but with a different co-
efficientb in the exponent. Given that the theory is, at best,
a largen theory we regard these results as encouraging. The 15
n=3 data, however, and thee=2 data, do not seem to fit a -20
simple exponential, at least for the rangegothat we have

T

(b)

In[L (¢

T

-25 -
been able to exploréThis is of course implicit in the values g
6<1 obtained for these systems from Figs. 2, 4, andits. -30 3
may well be that considerably larger valuesnoére needed 35 £
in d=2 than ind=1 for the largen asymptotics to become 40 £
apparent. P~ e o 45 Cinloiiile il
The above derivation of an exponential tail was specific to 0 25 5 75 10 125 15 175 20 225
nonconserved fields. What can we say for conserved fields? ’ ’ kL(t)'
The fundamental equation of motion for this case is obtained s
from the TDGL equation(2.1) by the replacement < g
I'——TV2. Applying the GAF method to this equation, im- % 0
posing the scaling forng1.1) [but with L(t)=t** for con- 2 st (c)
served field§ and taking the Fourier transform, leadqd 1@] = " E
= - . .
d q A a5
(—+q4 9(@)+ 79" (a)=59°[g(q)+B(q)], g
8 8 2 20 |
4.1 r
(4.11 prad
instead of(4.4). [The definition(4.5 of B(q) differs by a 30 F
constant from that used ifl2], where A was written as 35 E .
Zqﬁ“ dm being the position of the maximum af(q) for E
large  n.] Assuming the asymptotic form -40 -
~q” — ba® i S R W BT PN R PR N S
a(q) ~qrexp(-bq) for g, (4.11) gives(4.6) once more, A0 a5 s 75 10 125 15 175 20 225

provided §<4. Then our previous arguments apply, and the
asymptotic form(4.7), with A and b related by(4.8), are
recovered. This approach therefore predicts that the structure
factors for conserved and nonconserved systems will have FIG. 8. Log-linear plot of the scaled structure factor against
the sameasymptotic forms, at least within the context of the scaled momentum for the one-dimensional systef@sn=3, (b)

BH truncation. The same conclusion was drawn from recenf=4, (¢) n=5. In each case the continuous curve is the result of the
numerical solutions of the BH equati¢h3]. approximate theory of Sec. IV.

k L(t)

by a stretched exponential form. For the two-dimensional
systems, Table | summarizes the relevant parameters describ-
In summary, we have studied the dynamics of phase oring the fits in real and Fourier space. In contrast to systems
dering for models without topological defects in one and twowith singular defectsr{(<d), where the generalized Porod
dimensions. We find that scaling is achieved with the growtHorm g(q)~q~@*™ for the structure factor tail is a conse-
law L(t)=tY2 The tail in the structure factor is well fitted quence of the defect structure, and is independent of the

V. CONCLUSION
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presence or absence of conservation laws, in systems without g(q)—Ag’exp(—bq?), (A2)
defects the functional form does, apparently, differ for con-

served and nonconserved systems. We have shown, for egives

ample, that for the particular case of the4 model in two 3

dimensions the tail is well described, over the rangeqof B(q)—f;J J' F(p.k,q)ex —bE(p.k.q)],  (A3)
accessible to us, by a stretched exponential with exponent nJpJ 7 T
6=0.435, differing from the result for the same model with

conservation studied by R[0], who found§=1.7. where
Within the “toy” equation of Bray and Humayuh12], . )
however, we have shown that the true asymptotics are the F(p,k,a)=[p|"k["|a—p—K|

samefor conserved and nonconserved dynamics. Of course,

the BH equation is at best a largetheory, and the numeri-

cal results for nonconserved and conserved dynamics M&Ye now scale out thg dependence through the changes of

converge a® is increased. A related question is whether the . = - - . .
; variable p=qu, k=qv, gq=qe, wheree is a unit vector.

exponentss measured here and [10] are genuine asymp- Then

totic exponents, or effective exponents whose values will

change as the range gfover which the fit is made is moved A3

to largerg. More extensive simulations may cast some light  B(q)= —qz‘”?’yf f F(u,v,e)exd —bqE(u,v,e)].

on this issue. The “universal(independent of conservation n usv

laws) Porod tail behavior obtained for<d is geometrical in (AS)

origin, being a consequence of the field structure induced by

singular topological defec{d]. As yet, however, we have no

corresponding physical picture in the absence of topologic

defects.

E(p.k,q)=p|°+[k|°+]|q—p—k|°. (A4)

For g—, we can attempt to evaluate thieandv inte-
rals using the method of steepest descents. This requires
inimizing the functiorE(u,v,€). The points requiring con-

T . - . . sideration are the symmetry point=v=¢€/3, and the points
It is interesting that, within the simple model of equation u=0=v and two similar points obtained by permuting

(3 e oxomeny s ascenintowly 1o 23 nd 2o The”ccsarang vl G
N ~ g ' P Y. E(e/3,6/3,6/3)=31", and E(0,0,6)=E(0,e,0)=E(e,0,0)

say thaté=2 corresponds to the limit—o at fixed, large — 1. Thus fors> 1, the symmetry point minimizes, giving

g, while §=1 corresponds tq—« at fixed, largen. We B( 1-6 . . .
D q) ~exp(—3-"°hg). But this form violates the asymptotic

have argued that the crossover between these limiting forms % : .

for fixed, largen occurs atq~ (Inn)*2. This change of be- felation(4.6), according to whicl(q) andg(q) must decay

havior depending on the order of the limits is reminiscent ofWith the sameexponential factor, s@>1 is ruled out,
P g For §<1, the smallesk is unity, obtained when two of

the result obtained from the conserved version (4fl), . : ; .
u, v, ande—u—v vanish. So this case is apparently consis-

where a novel “multiscaling” behavior is obtained for . X i )
. 2 S tent with (4.6). However, the integral is now dominated by
n—oo at fixed, large [11], while simple scaling is recovered . )
points where two of the momenfa k, andq— p—k vanish.

for t—c at fixed, largen [12]. For the nonconserved case, This invalidates the use of the asymptotic form &fiq) in

one always _has simple scaling. For both _conserved and N%%e evaluation oB(q), so the derivation of a stretched ex-
conserved fields, however, the asymptoticgfd) are sen- . ) ! .
ponential form is not internally consistent fér 1.

sitive to whethem is large or truly infinite. This rules out, This leavess—1. For this case all points of the form

for example, exploring the asymptotics by expanding around _ _ 't.h 0<a=1 d 02 <1— .

the largen solution in powers of 1. u=ce v=pe wih 0<a<l an p=l-a, gve
E=1, so one has to integrate over all such points. Writing

u=ae+u, , v=pRBe+v, , expandingt to quadratic order in

u,, v,, and carrying out the integrals ovar , v, , gives
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APPENDIX
In this Appendix we us€4.6) to derive the asymptotic (A6)
form (4.7) for g(q). From the definition(4.5 we have But (4.6) implies, asymptotically,
B(q)=(2A/N)g?* Yexp(—bQ). (A7)

1
B(q)=ﬁfpfkg(p)g(k)g(q—p—k), (A1)
Comparing(A6) and (A7) givesv=(1—d)/2 and Eq.(4.8

where [,=[d%p/(2m)". Inserting the asymptotic form for the amplitudeA.
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