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Using a cell-dynamic system simulation scheme, we investigate the phase-ordering dynamics of noncon-
servedO(n) models without topological defects, i.e., forn.d11 whered is the spatial dimensionality. In
particular, we consider zero-temperature quenches ford52, n54,5 and ford51, n53,4,5. We find, in
agreement with previous simulations using fixed-length spins, that dynamical scaling is obtained, with char-
acteristic lengthL(t)5t1/2. We show that the asymptotic behavior of the structure-factor scaling function
g(q) is well fitted by the stretched exponential formg(q);exp(2bqd), with an exponentd that appears to
depend on bothn andd. An analytical treatment of an approximate large-n equation for the pair correlation
function yieldsg(q);q2(d21)/2exp(2bq), with b;(lnn)1/2 for largen, in agreement with recent simulations
of the same equation.@S1063-651X~96!07205-4#

PACS number~s!: 64.60.Cn, 64.60.My

I. INTRODUCTION

The phase-ordering dynamics of systems quenched from a
high-temperature disordered state into an ordered state is a
problem of great relevance in the description of out-of-
equilibrium pattern formation@1#. One well established prop-
erty is the onset of dynamic scaling, where the late-time
behavior of the order-parameter correlation functions is de-
scribed by scaling forms with a single time-dependent length
scaleL(t). Thus the real-space correlation function is found
to have the scaling form

C~r ,t !5 f „r /L~ t !…, ~1.1!

while its Fourier transform, the structure factor, has the cor-
responding scaling form

S~k,t !5@L~ t !#dg„kL~ t !…. ~1.2!

Conventional experimental systems such as binary alloys
and binary liquids are described by a scalar order parameter.
Recently, however, there has been much interest in systems
with more complicated order parameters such as
n-component vectors@theO(n) model# @1–15# and traceless
symmetric tensors~nematic liquid crystals! @16#. In this pa-
per we restrict our discussion to theO(n) model.

Much numerical and theoretical effort has been devoted to
understanding the basic properties of systems that can sup-
port singular topological defects, i.e., systems withn<d.
The presence of such defects leads to a generalization of the
usual Porod law for the large-q tail of the structure-factor
scaling functiong(q), namely,g(q);q2(d1n) for q@1 @6#.
This result is geometrical in origin, and is independent of
whether or not the order parameter is conserved by the dy-
namics@7#.

Very recently, the casesn5d11, for which nonsingular
topological textures occur, have been studied numerically
~for d52) and analytically~for d51). Rutenberg and Bray
@8# found that thed51 XY model (n52) exhibits a scaling

violation due to the existence oftwo relevant length scales:
the phase coherence length and phase winding length. On the
other hand, the two-dimensional Heisenberg model (n53)
with nonconserved dynamics also violates dynamic scaling
due, it appears, to the existence of as many as three separate
length scales, related to individual texture size, the typical
separation between textures, and the typical distance be-
tween textures of opposite charge@9#. These texture systems
are, perhaps, the most complex of the phase ordering sys-
tems.

By contrast, systems without topological defects
(n.d11) seem relatively straightforward. There is good
evidence for the simple scaling behavior described by~1.1!
and ~1.2!, with characteristic scaleL(t);t1/2 for noncon-
served dynamics. The energy scaling approach of Bray and
Rutenberg @17# shows that, provided scaling holds,
L(t);t1/2 is indeed correct forn.d11 systems with non-
conserved dynamics, and givesL(t);t1/4 for conserved dy-
namics, again nicely consistent with simulation results@10#
and the renormalization group result of Bray@18#.

Much less is known, however, about the form of the
structure-factor tail forn.d11. The recent simulations of
Rao and Chakrabarty~RC! @10#, with conserved dynamics,
for the casesd51, n53 andd52, n54 show ‘‘squeezed
exponential’’ behavior@i.e.,g(q);exp(2bqd) with d.1#. In
this paper we concentrate on systems withn.d11 and non-
conserved dynamics. We consider the casesd52, n54,5
and d51, n53,4,5. In each case we confirm the expected
t1/2 growth, and find ‘‘stretched exponential’’ behavior@i.e.,
g(q);exp(2bqd) with d<1# for the tail of the structure fac-
tor, with an exponentd that appears to depend onn andd.

In an attempt to understand the origin of this tail behavior,
we present an analytical approach based on an approximate
equation due to Bray and Humayun~BH! @12#, which is itself
based on the ‘‘Gaussian auxiliary field’’~GAF! method@14#
that describes rather well the form of the structure factor for
nonconserved systems with singular defects (n<d). For
those systems, this method reproduces, in particular, the gen-
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eralized Porod tail. Forn.d11, the physical basis of the
method is less clear. However, the simple truncation of the
equation at leading order in 1/n, proposed by BH in another
context@12#, leads to an exponential decay ofg(q), modified
by a power-law prefactor ford.1. It is noteworthy that the
asymptotic behavior is nonanalytic in 1/n: for n strictly infi-
nite, the Gaussian formg(q);exp(22q2) is obtained. The
exponential asymptotics of the BH equation were noted in
recent numerical studies by Castellano and Zannetti@13#.

Using a ‘‘hard-spin’’ model Newman, Bray, and Moore
@5# studied numerically the dynamics of one-dimensional
systems without defects forn53,4, and 5. Measuring only
the real-space correlations, they found that dynamic scaling
is obeyed with characteristic lengthL(t)5t1/2. Moreover,
they found the real-space correlation function was very well
fitted by a Gaussian form, which is the exact result in the
limit n→`. The Fourier space analysis presented here, re-
vealing stretched exponential tails, shows that the good
Gaussian fits achieved in real space are misleading.

Our main results can be summarized as follows.~i! For all
our models the characteristic length scale required to col-
lapse the data for the real-space correlation function and
structure factor isL(t)5t1/2, in agreement with theoretical
predictions@17#. ~ii ! The asymptotic behavior of the structure
factor is well described by a stretched exponential of the
form g(q);exp(2bqd), where the exponentd apparently de-
pends on bothn andd and seems to be different from the
value obtained for the corresponding system with conserved
dynamics@10#. ~iii ! An analytical treatment of the approxi-
mate BH equation, expected to be valid at large~but finite!
n, gives a simple exponential modified by a power,
g(q);q2(d21)/2exp(2bq), with the sameasymptotic form
for conserved dynamics.

The rest of this paper is organized as follows. In the next
section, we introduce the cell-dynamic system~CDS! model
based on the time-dependent Ginzburg-Landau~TDGL!
equation for a zero-temperature quench, and we describe the
corresponding numerical procedure employed in the simula-
tion. Section III presents simulation results for a vector order
parameter withn54 andn55 components in one and two
dimensions and the one-dimensionalO(3) model. For the
d52 systems, we also present data for the real-space corre-
lation function to demonstrate the dynamic scaling behavior.
We then discuss the procedure used to obtain the asymptotic
functional form of the structure factor tail. Next we compare
the data to the results of the approximate analytic theory.
Finally we make some concluding comments on our results
and a give a brief summary.

II. MODEL AND SIMULATIONS

The dynamic evolution of a nonconserved vector
order parameter ~model A! with n components
fW 5(f1 ,f2 , . . . ,fn), for a zero-temperature quench, is de-
scribed by a purely dissipative process defined in term of the
following TDGL equation:

]fW ~x,t !

]t
52G

dF„fW ~x,t !…

dfW ~x,t !
, ~2.1!

with G a kinetic coefficient that we will set equal to unity,
andF the free energy functional that generates the thermo-
dynamic force,

F@fW ~x,t !#5E ddxF12 @¹fW ~x,t !#21V„fW ~x,t !…G , ~2.2!

with the potential defined as

V„fW ~x,t !…5 1
4 @12fW 2~x,t !#2, ~2.3!

wherefW 25( i51
n f i

2(x,t). The ground states, or fixed points

of the dynamics, are determined by the conditionfW 251,
which defines a degenerate manifold of states connected by
rotations. In the internal space of the order parameter, this
manifold is the surface of ann-dimensional sphere. At late
times the order parameter is saturated in length~i.e., lies on
the ground state manifold everywhere!. Then the dynamics is
driven by the decrease of the free energy associated with the
term (¹fW )2 in ~2.2!, through a reduction in the magnitude of
the spatial gradients.

We can construct an explicit numerical scheme for the
simulation based on a computationally efficient algorithm,
namely, the CDS@19#, which updates the order parameter
according to the rule

fW ~x,t11!5H„fW ~x,t !…1tDF1z(x8 fW ~x8,t !2fW ~x,t !G ,
~2.4!

with

H„fW ~x,t !…5fW ~x,t !1tfW ~x,t !@12~fW ~x,t !2!#, ~2.5!

wherez is the number of nearest neighbors andt andD are
parameters that we choose to bet50.2 andD50.5 in our
simulations.

The above numerical procedure is identical to that used
by Toyoki @15#, differing only in the values of the parameters
t andD. The CDS is a Euler-like algorithm and for conve-
nience in our analysis of the results we use a unit of time
equal to the update time stept. It should be noted~see Figs.
1 and 3! that the scaling regime is reached very quickly in
these systems without defects, and very long runs are not
necessary.

The two-dimensional systems consist of a square lattice of
size 2563 256 with periodic boundary conditions. The
physical quantities are calculated as averages over 20 inde-
pendent distributions of initial conditions. The one-
dimensional systems haveL516 384 sites~with periodic
boundary conditions! and we average 100 independent runs.
The initial conditions for the order parameter components
fW i were randomly chosen from a uniform distribution with
support on the interval (20.1,0.1).

A quantity of interest that is computed during the course
of the numerical simulation in the two-dimensional models is
the two-point real-space correlation function

C~r ,t !5^fW ~x,t !•fW ~x1r ,t !&, ~2.6!
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where^ & stands for the average over the set of independent
initial conditions ~or ‘‘runs’’ !. A spherical average over all
possible distancesr5ur u is performed to find the isotropic
real-space correlationC(r ,t). The other function of interest,
calculated for all the models, is the structure factor

S~k,t !5^fW ~k,t !•fW ~2k,t !&. ~2.7!

We also make a spherical average over all possible values of
k with given k5uku.

In the calculation of these quantities at each time, the data
are ‘‘hardened’’ by replacing the order parameter at each
point by a unit vector in the same direction~the fixed point
of the CDS iteration being a vector of unit length!. This
procedure accelerates the entry into the dynamic scaling re-
gime, and helps us to elucidate the proper nature of the
asymptotic tail in the structure factor.

III. RESULTS

Dynamic scaling is observed for all the models studied.
The scaling regime is reached at quite early times, in agree-
ment with previous studies. We show that dynamic scaling
holds in the two-dimensional systems (n54,5), using the
characteristic lengthL(t)5t1/2 deduced from theoretical con-
siderations@17#. This agrees with earlier simulations of Bray
and Humayun using ‘‘hard-spin’’ dynamics@3#.

Figure 1~a! presents a plot ford52, n54 of the correla-
tion function ~1.1! as a function of distancer for several
times, while in Fig. 1~b! we show the collapsed dynamic
scaling function when the analysis is made using the scaling
variablex5r /L(t). As can be seen from the figure, the scal-
ing function f (x) is a monotonically decreasing function
with the generic featureless shape that is characteristic of
nonconservedO(n) models.

It is of some interest to investigate the small-x behavior of
the real-space scaling functionf (x). In systems withn<d,
the existence of singular topological defects leads to a

FIG. 2. ~a! Scaling structure factorg(q)5@L(t)#22S(k,t) as a
function of scaled momentumq5kL(t) for a two-dimensional sys-
tem withn54 components for lattices of size 2563256 ~averaged
over 20 different initial conditions!. ~b! Demonstration of the
stretched exponential behavior, plotting lng(q) against qd with
d50.435. The line is included as a guide to the eye.

FIG. 1. ~a! Real-space correlation functionC(r ) for a two-
dimensional system withn54 components as a function of distance
r for several timest. The data were obtained from lattices of size
2563 256, averaged over 20 different initial conditions.~b! Dem-
onstration of dynamic scaling,C(r ,t)5 f „r /L(t)…, with L(t)5t1/2.
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nonanalytic term of the formuxun ~with an additional lnx
factor for evenn), which leads to thek2(d1n) Porod tail in
Fourier space@6,7#. In the present case, wheren.d, we
expect no such short-distance singularities. Therefore, we
consider an expansion of the formf (x)512ax21bx4•••.
In Table I we present the parametersa and b determined
from the simulations in the rangex,0.5. The ratio
r5b/a2 should be a universal number for givenn andd. It
will be seen from Table I that this ratio has the value
r.0.59 forn54, different from the value 1/2 obtained for a
Gaussian function, which is the exact result for the limit
n→`. For n55, Table I givesr.0.49, already consistent
with the large-n result. However, in the absence of any short-
distance singularity, the small-x behavior provides no useful
information on the nature of the tail in the structure factor.
Consequently, it is more convenient to investigate directly
the simulation results of the structure factor and extract from
them the asymptotic behavior. We shall see that the behavior
in Fourier space is clearly non-Gaussian, even forn55.

As expected, given the absence of topological defects, the
results indicate~Fig. 2! that the decay of the structure factor
is clearly faster than a power law, in contrast to the interpre-
tation of his own similar results by Toyoki@15#. In order to
demonstrate that the tail is well described by the stretched
exponential form

g~q!;Aexp~2bqd!, ~3.1!

whereq5kL(t) is the scaling variable in momentum space,
we attempt to find the corresponding powerd in the expo-
nential by plotting lng versusqd and adjusting the value of
d until the best linear behavior is obtained in the regime
q.1. During the fitting procedure the other two parameters
of the fit,A andb, are readily determined. The criteria used
for the optimum fitting is based on the Pearson correlation
coefficient~PCC!, which measures the strength of the linear
relation among two variables and varies between21 ~per-
fect negative linear relation! and11 ~perfect positive linear
relationship!. We proceed as follows: first, we choose an
exponentd and then perform linear regression; next we
changed until the PCC reaches its maximum value. The
regression coefficients are calculated using the values of the
scaling structure function at the last two times in the simu-
lation. The optimum values for system withn54 compo-
nents are d50.435 with a Pearson coefficient of
20.999998. The other two parameters are lnA513.21 and
b58.19. This result is presented in the Fig. 2~b!.

We turn now to the description of the casen55, follow-
ing a similar analysis to then54 model. Figure 3~a! shows

the correlation function as a function of distance for different
times. In this model the collapse is also achieved using the
characteristic lengthL(t)5t1/2, as can be observed in Fig.
3~b!. Therefore, both models are consistent with dynamical
exponentz52. The corresponding scaling plot for the struc-
ture factor is shown in Fig. 4~a!. A more important effect is
observed in the structure factor tail, because in this case it
also has a stretched exponential but with an apparently larger
exponent. Following an analysis similar to that used for
n54, we find that the value of the best fit value of the ex-
ponent isd50.613, and the corresponding PCC in the re-
gression is20.999998. The other two parameters are
lnA57.57 andb54.39. In Fig. 4~b! we plot lng againstqd

and the linear behavior is seen clearly.
Comparison between the real-space correlation functions

of the n54 andn55 models shows that the scaling func-
tions are very similar; the main difference is that the scaling
function decreases slightly more slowly forn55 than for
n54. This is reflected in the parameters of the fitting func-
tion for the small-x range: the amplitudesa andb tend to
decrease asn increases~Table I!.

We turn to a discussion of the simulation results for one-
dimensional systems. We shall describe the relevant behav-
ior in Fourier space. Real-space data have been presented in
@5#. Our results show that in one-dimensional systems the

FIG. 3. Same as Fig. 1 but for then55 model.

TABLE I. Parameters determined from fitting of the simulation
results for the two-dimensional systems: the small-x solution
(x,0.5) in the scaling function with the form
f (x)512ax21bx4 and the asymptotic analysis of scaling struc-
ture factor in term of the stretched exponentialg(q);exp(2bqd).

Small x Tail
n a b d b

4 1.5326 1.3916 0.435 8.19
5 1.3040 0.8417 0.613 4.39
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asymptotic behavior of the structure factor also has a
stretched exponential form, but the fitted exponentsd are
larger than those of the corresponding two-dimensional mod-
els, and close to unity forn54 and 5.

In Fig. 5~a!, we present the simulation results for the scal-
ing function g(q) of the structure factor for the one-
dimensional Heisenberg Model (n53). The continuous
curve is the result of the analytical approach described in
Sec. IV. The analysis of the asymptotic behavior gives an
exponentd50.79 for the stretched exponential. Fig. 5~b!
shows the curve of ln@g(q)# versusqd, where the linear be-
havior is clearly observed. Similarly, we present the corre-
sponding plots for then54 model in Fig. 6, where the mea-
sured exponent is nowd50.98, while forn55 we obtain
d51.02 as is shown in Fig. 7. The values ofd for the last
two models are so close that in practice it is difficult to
distinguish between them. They are also close to the value
unity obtained from the approximate large-n equation dis-
cussed in the following section.

It is clear from the results for the one-dimensional models
that the scaling function in real space is not a Gaussian func-
tion, despite the good real-space fits to this form obtained in
@5#. Moreover, the~effective! exponentsd for the n54,5

models are bigger than for the corresponding models in two
dimensions. Therefore, we have evidence that the exponent
d increases withn, while it seems to decrease withd. Note
that the Gaussian result obtained forn5` corresponds to
d52, so the results presented here for the structure-factor tail
are actually quite far from that limit. The analytical treatment
presented in the next section gives some indication of why
this might be expected. In particular, it suggests that the
structure factor is dominated by a simple exponential for
q→` at fixed largen, while the familiar Gaussian form is
recovered asn→` at fixedq.

We conclude this section by discussing briefly some al-
ternative fitting forms for the structure factor tail. First, how-
ever, we note that the stretched exponential form~3.1! de-
scribes the tail well over at least 10 decades ofS(k) in all
cases. Of course, this represents a much smaller dynamic
range ~1 to 112 decades! in the scaling variableq5kL(t).
Motivated by the analytical result@Eq. ~4.7! below# of the
approximate large-n theory, other fitting forms were tried for

FIG. 4. ~a! Same as Fig. 2 but for then55 model. ~b! The
powerd50.613 was found to give the best linear relation between
lng(q) andqd.

FIG. 5. ~a! Scaling structure factorg(q)5@L(t)#21S(k,t) as a
function of scaled momentumq5kL(t) for a one-dimensional
Heisenberg model@O(3) model# for lattices of size 16 384~aver-
aged over 100 different initial conditions!. Continuous curve: result
of the approximate analytical treatment described in the text.~b!
Demonstration of the stretched exponential behavior, plotting
lng(q) againstqd with d50.79. The line is a guide to the eye.

4690 53F. ROJAS AND A. J. BRAY



d52 ~the agreement with the large-n theory already being
good forn54 and 5 ind51). A direct fit of ~4.7! does not
work well for d52. Allowing for a general power-law pref-
actor,g(q)5Aq2xexp(2bq), gives a reasonable fit, but with
very large values forx — 5.6 for n54 and 6.7 forn55.
Fixing x51/2, but allowing for a general stretched exponent
d again gives a reasonable fit~with d.0.68 for n54 and
0.70 forn55), but over a significantly reduced range ofq.
For these reasons we prefer the unmodified stretched expo-
nential~3.1! as giving the simplest and most convincing de-
scription of the large-q data, at least for these small values of
n in d52. Of course, it is quite possible that the form~4.7!
will fit the data well at larger values ofn.

IV. ANALYTICAL TREATMENT

In an attempt to gain some analytical insight into the
structure factor asymptotics, we start from an approximate
equation of motion for the pair correlation function derived
using the Gaussian auxiliary field approach pioneered by
Mazenko@20#. We then make, for reasons that will become
clear, the further simplification of retaining only the leading

nonlinearity asn→`. The resulting equation is then finally
used to extract the asymptotics ofg(q).

The GAF method for vector fields has been discussed in
some detail elsewhere. We refer the reader to the original
papers@14# and a recent review@1# for a full exposition. The
essence of the method is a mapping from the original field
variablefW to an ‘‘auxiliary field’’ mW . The functionfW (mW )
satisfies the equation (1/2)( i51

n ]2fW /]mi

2 5]V/]fW , where

V(fW ) is the potential in the Ginzburg-Landau function~4!.
With the boundary conditionsfW (0)50, andfW (mW )→mW /umW u
for umW u→`, this equation forfW (mW ) represents the equilib-
rium profile function for a spherically symmetric topological
defect, withumW u representing distance from the defect.

The ~uncontrolled! approximation thatmW is a Gaussian
field, and the imposition of the scaling form~1!, leads even-
tually to the self-consistent equation@1,14#

f 91S d21

4
1
x

4D f 81
l

2
g
dC

dg
50 ~4.1!

for the scaling functionf (x), where primes indicate deriva-
tives. In ~4.1! g is the normalized correlator of the auxiliary

FIG. 6. ~a! Same as Fig. 5, but for then54 model. ~b! The
powerd50.98 is found for this model to give the best linear rela-
tion between lng(q) andqd.

FIG. 7. ~a! Same as Fig. 5 but for then55 model.~b! Same as
Fig. 5~b!, but with d51.02.
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field, g5^mW (1)•mW (2)&/@^mW 2(1)&^mW 2(2)&#1/2, where 1 and
2 represent the space-time pointsx1 ,t andx2 ,t, and the func-
tion C(g) is given by

C~g!5
ng

2p FBS n11

2
,
1

2D G
2

FS 12 , 12 ; n12

2
;g2D , ~4.2!

whereB(x,y) is theb function, andF(a,b;c;z) the hyper-
geometric function. The constantl in ~4.1! has to be ad-
justed so thatf (x) vanishes sufficiently fast at infinity@14#.

As should be clear from the above discussion,~4.1! only
really makes sense forn<d, based as it is on the presence of
singular topological objects whose positions are defined by
the zeros of the fieldfW or, equivalently, by the zeros ofmW .
Indeed, the functionC(g) has a built-in structure that gen-
erates the Porod tail associated with such defects. Specifi-
cally, in the short-distance limit, whereg→1, the hypergeo-
metric function in~4.2! has a singular contribution of order
(12g2)n/2 ~with a logarithmic correction for evenn). Since
12g2;x2 for small scaling variablex, this singular term is
of orderxn ~again, with a logarithm for evenn), leading to
the power-law tailg(q);q2(d1n) in Fourier space. Within
the GAF approach, this tail is obtained forall n andd. For
n.d11, however, neither singular topological objects nor
nonsingular topological textures exist, so the GAF result is
qualitatively incorrect. Indeed, this is to be expected since
the GAF approach is specifically designed to build in the
defect structure.

So what should one do when there are no defects? We
have seen that the usual GAF approach always gives a Porod
tail, for any n andd: this is unphysical forn.d11, since
the tail is a consequence of the presence of topological de-
fects. One way around this impasse is to artificially approxi-
mate the full GAF equation~4.1! by the form valid for
n→`. In this limit gdC/dg5 f1 f 3/n1O(1/n2), and~4.1!
becomes, correct toO(1/n),

f 91S d21

4
1
x

4D f 81
l

2 S f1 1

n
f 3D50. ~4.3!

This step, admittedlyad hoc, has the desired effect of elimi-
nating the unwanted~for n.d11) short-distance singularity
in f (x). Equation~4.3! is the nonconserved version of the
equation introduced by BH to study the crossover from mul-
tiscaling to simple scaling in the asymptotic dynamics of a
conservedvector field at large but fixedn @12#. Both con-
served and nonconserved versions have recently been studied
numerically@13#.

To extract analytically the large-q behavior, we perform a
(d-dimensional! Fourier transform of~4.3!. The resulting
equation forg(q)[*ddx f(x)exp(iq•x) is

S d41q2Dg~q!1
q

4
g8~q!5

l

2
@g~q!1B~q!#, ~4.4!

where

B~q!5
1

nE ddx f3~x!exp~ iq•x!. ~4.5!

If we assume an asymptotic formg(q);qnexp(2bqd), with
d,2, then~4.4! gives

B~q!→
2q2

l
g~q!, q→`. ~4.6!

In the Appendix, we show that consistency with~4.6! re-
quiresd51 andn5(12d)/2, i.e.,

g~q!→Aq~12d!/2exp~2bq!, q→`. ~4.7!

In real space this implies that the functionf (z) has simple
poles in the complexz plane atz56 ib. The value ofb is
not determined by this argument; instead one can derive~see
Appendix! the relationship

A25~16p2n/l!~2pb!d21 ~4.8!

betweenb and the prefactorA in the asymptotic form~4.7!.
The existence of these simple poles in real space also follows
directly from the real-space equation~4.3!. If one assumes a
singularity of the form (z2z0)

2g, with g.0, then balancing
the dominant termsf 9 andl f 3/2n gives immediatelyg51,
i.e., a simple pole. The positionz0 is not determined, but the
residueC of the pole is given byC57 i (4n/l)1/2, where the
two values correspond to the polesz056 ib. Using this re-
sult forC, one can readily recover~4.8! by contour methods,
e.g., ford51 one has

g~q!5E
2`

1`

dx f~x!exp~ iqx!

→2p~4n/l!1/2exp~2bq!, q→`, ~4.9!

where the second line, equivalent to~4.8! for d51, was ob-
tained by closing the contour in the upper half plane.

The approach outlined above gives the relation~4.8! be-
tweenA andb, but does not determineb explicitly. We now
give a heuristic argument thatb;(lnn)1/2 for largen. First
we make an observation concerning the value ofl. Equation
~4.4! with q50 gives

l5
d

2

g~0!

g~0!1B~0!

5
d

2 F11
1

nE ddx f3~x! YE ddx f~x!G21

. ~4.10!

In particular, l5d/2 for n5`. For n5`, therefore,
~4.4! becomes q2g(q)1(q/4)g8(q)50, with solution
g(q)5(8p)d/2exp(22q2) @the prefactor being fixed by the
condition f (0)51#. Forn large but finite, on the other hand,
we have seen that the asymptotic form isg(q);exp(2bq).
The crossover between these two forms presumably occurs at
someq5q* (n), with g(q);exp(22q2) for 1!q!q* , and
g(q);exp(2bq) for q@q* . Matching these two forms at
q5q* gives q*;b. Next we evaluate B(q) in
the region q!q* . Here q(q).(8p)d/2exp(22q2), so
f (x).exp(2x2/8), giving B(q);(1/n)exp(22q2/3). How-
ever, this decays more slowly withq than the other terms in
~4.4!, which fall off as exp(22q2). So the term involving
B(q) ~evaluated forq!q* ) becomes comparable with the
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other terms when (1/n)exp(22q2/3);exp(22q2), i.e., when
q;(lnn)1/2. This suggestsq*;(lnn)1/2, and therefore
b;(lnn)1/2. The numerical data of Castellano and Zannetti
@13# certainly show thatb increases extremely slowly with
n.

To compare this approximate theory with our simulation
data, we have solved~4.1! numerically ford51, n53,4,5,
using the procedure described in@14#. The Fourier transform
was then taken numerically, and the ‘‘best fit by eye’’ to the
structure-factor data was obtained by adjusting the time scale
in the theoretical curves, giving the results shown by the
continuous curves in Figs. 5~a!, 6~a!, and 7~a!. The corre-
sponding log-linear plots, which reveal the large-q behavior
more clearly, are shown in Figs. 8~a!–~c!. As might be ex-
pected, Eq.~4.1! @or its Fourier transform~4.4!# does not
describe the data quantitatively over the whole range of
q5kL(t), but it does give a qualitatively correct description.
There is an early parabolic region, corresponding to a Gauss-
ian form for g(q), which then gives way to a slower decay
that, at least forn54 and 5, is consistent with the simple
exponential form predicted by~4.4! but with a different co-
efficientb in the exponent. Given that the theory is, at best,
a large-n theory we regard these results as encouraging. The
n53 data, however, and thed52 data, do not seem to fit a
simple exponential, at least for the range ofq that we have
been able to explore.~This is of course implicit in the values
d,1 obtained for these systems from Figs. 2, 4, and 5.! It
may well be that considerably larger values ofn are needed
in d52 than ind51 for the large-n asymptotics to become
apparent.

The above derivation of an exponential tail was specific to
nonconserved fields. What can we say for conserved fields?
The fundamental equation of motion for this case is obtained
from the TDGL equation ~2.1! by the replacement
G→2G¹2. Applying the GAF method to this equation, im-
posing the scaling form~1.1! @but with L(t)5t1/4 for con-
served fields#, and taking the Fourier transform, leads to@12#

S d81q4Dg~q!1
q

8
g8~q!5

l

2
q2@g~q!1B~q!#,

~4.11!

instead of~4.4!. @The definition~4.5! of B(q) differs by a
constant from that used in@12#, where l was written as
2qm

2 , qm being the position of the maximum ofg(q) for
large n.# Assuming the asymptotic form
q(q);qnexp(2bqd) for q→`, ~4.11! gives~4.6! once more,
providedd,4. Then our previous arguments apply, and the
asymptotic form~4.7!, with A and b related by~4.8!, are
recovered. This approach therefore predicts that the structure
factors for conserved and nonconserved systems will have
thesameasymptotic forms, at least within the context of the
BH truncation. The same conclusion was drawn from recent
numerical solutions of the BH equation@13#.

V. CONCLUSION

In summary, we have studied the dynamics of phase or-
dering for models without topological defects in one and two
dimensions. We find that scaling is achieved with the growth
law L(t)5t1/2. The tail in the structure factor is well fitted

by a stretched exponential form. For the two-dimensional
systems, Table I summarizes the relevant parameters describ-
ing the fits in real and Fourier space. In contrast to systems
with singular defects (n<d), where the generalized Porod
form g(q);q2(d1n) for the structure factor tail is a conse-
quence of the defect structure, and is independent of the

FIG. 8. Log-linear plot of the scaled structure factor against
scaled momentum for the one-dimensional systems:~a! n53, ~b!
n54, ~c! n55. In each case the continuous curve is the result of the
approximate theory of Sec. IV.
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presence or absence of conservation laws, in systems without
defects the functional form does, apparently, differ for con-
served and nonconserved systems. We have shown, for ex-
ample, that for the particular case of then54 model in two
dimensions the tail is well described, over the range ofq
accessible to us, by a stretched exponential with exponent
d50.435, differing from the result for the same model with
conservation studied by RC@10#, who foundd.1.7.

Within the ‘‘toy’’ equation of Bray and Humayun@12#,
however, we have shown that the true asymptotics are the
samefor conserved and nonconserved dynamics. Of course,
the BH equation is at best a large-n theory, and the numeri-
cal results for nonconserved and conserved dynamics may
converge asn is increased. A related question is whether the
exponentsd measured here and in@10# are genuine asymp-
totic exponents, or effective exponents whose values will
change as the range ofq over which the fit is made is moved
to largerq. More extensive simulations may cast some light
on this issue. The ‘‘universal’’~independent of conservation
laws! Porod tail behavior obtained forn<d is geometrical in
origin, being a consequence of the field structure induced by
singular topological defects@7#. As yet, however, we have no
corresponding physical picture in the absence of topological
defects.

It is interesting that, within the simple model of equation
~4.1!, the exponentd jumps discontinuously fromd52 at
n5` to d51 for n large but finite. More precisely, one can
say thatd52 corresponds to the limitn→` at fixed, large
q, while d51 corresponds toq→` at fixed, largen. We
have argued that the crossover between these limiting forms
for fixed, largen occurs atq;(lnn)1/2. This change of be-
havior depending on the order of the limits is reminiscent of
the result obtained from the conserved version of~4.1!,
where a novel ‘‘multiscaling’’ behavior is obtained for
n→` at fixed, larget @11#, while simple scaling is recovered
for t→` at fixed, largen @12#. For the nonconserved case,
one always has simple scaling. For both conserved and non-
conserved fields, however, the asymptotics ofg(q) are sen-
sitive to whethern is large or truly infinite. This rules out,
for example, exploring the asymptotics by expanding around
the large-n solution in powers of 1/n.
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APPENDIX

In this Appendix we use~4.6! to derive the asymptotic
form ~4.7! for g(q). From the definition~4.5! we have

B~q!5
1

nEpEkg~p!g~k!g~q2p2k!, ~A1!

where*p[*ddp/(2p)d. Inserting the asymptotic form

g~q!→Aqnexp~2bqd!, ~A2!

gives

B~q!→
A3

n EpEkF~p,k,q!exp@2bE~p,k,q!#, ~A3!

where

F~p,k,q!5upunukunuq2p2kun

E~p,k,q!5upud1ukud1uq2p2kud. ~A4!

We now scale out theq dependence through the changes of
variable p5qu, k5qv, q5qe, where e is a unit vector.
Then

B~q!5
A3

n
q2d13nE

u
E
v
F~u,v,e!exp@2bqE~u,v,e!#.

~A5!

For q→`, we can attempt to evaluate theu andv inte-
grals using the method of steepest descents. This requires
minimizing the functionE(u,v,e). The points requiring con-
sideration are the symmetry point,u5v5e/3, and the points
u505v and two similar points obtained by permutingu,
v, and e2u2v. The corresponding values ofE are
E(e/3,e/3,e/3)5312d, and E(0,0,e)5E(0,e,0)5E(e,0,0)
51. Thus ford.1, the symmetry point minimizesE, giving
B(q);exp(2312dbq). But this form violates the asymptotic
relation~4.6!, according to whichB(q) andg(q) must decay
with the sameexponential factor, sod.1 is ruled out.

For d,1, the smallestE is unity, obtained when two of
u, v, ande2u2v vanish. So this case is apparently consis-
tent with ~4.6!. However, the integral is now dominated by
points where two of the momentap, k, andq2p2k vanish.
This invalidates the use of the asymptotic form forg(q) in
the evaluation ofB(q), so the derivation of a stretched ex-
ponential form is not internally consistent ford,1.

This leavesd51. For this case all points of the form
u5ae, v5be, with 0<a<1 and 0<b<12a, give
E51, so one has to integrate over all such points. Writing
u5ae1u' , v5be1v' , expandingE to quadratic order in
u' , v' , and carrying out the integrals overu' , v' , gives
after some algebra

B~q!5~A3/4p2n!qd1113nexp~2bq!I ~d,n!/~2pb!d21

I ~d,n!5E
0

1

daE
0

12a

db@ab~12a2b!#n1~d21!/2.

~A6!

But ~4.6! implies, asymptotically,

B~q!5~2A/l!q21nexp~2bq!. ~A7!

Comparing~A6! and ~A7! givesn5(12d)/2 and Eq.~4.8!
for the amplitudeA.
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